บทที่ 7 ระบบสุริยะ


กำเนิดระบบสุริยะ


               หลักฐานที่สำคัญของการกำเนิดของระบบสุริยะก็คือ การเรียงตัว และการเคลื่อนที่อย่างเป็นระบบระเบียบของดาว เคราะห์ ดวงจันทร์บริวาร ของดาวเคราะห์ และดาวเคราะห์น้อย ที่แสดงให้เห็นว่าเทหวัตถุ ทั้งมวลบนฟ้า นั้นเป็นของ ระบบสุริยะ ซึ่งจะเป็นเรื่องที่เป็นไปไม่ได้เลย ที่เทหวัตถุท้องฟ้า หลายพันดวงจะมีระบบ โดยบังเอิญโดยมิได้มีจุดกำเนิดร่วมกัน 
               Piere Simon Laplace ได้เสนอทฤษฎีจุดกำเนิดของระบบสุริยะ ไว้เมื่อปี ค.ศ.1796 กล่าวว่า ในระบบสุริยะจะ มีมวลของก๊าซรูปร่างเป็นจานแบนๆ ขนาดมหึมาหมุนรอบ ตัวเองอยู่ ในขณะที่หมุนรอบตัวเองนั้นจะเกิดการหดตัวลง เพราะแรงดึงดูดของมวลก๊าซ ซึ่งจะทำให้ อัตราการหมุนรอบตัวเองนั้น จะเกิดการหดตัวลงเพราะแรงดึงดูดของก๊าซ ซึ่งจะทำให้อัตราการ หมุนรอบตังเอง มีความเร็วสูงขึ้นเพื่อรักษาโมเมนตัมเชิงมุม (Angular Momentum) ในที่สุด เมื่อความเร็ว มีอัตราสูงขึ้น จนกระทั่งแรงหนีศูนย์กลางที่ขอบของกลุ่มก๊าซมีมากกว่าแรงดึงดูด ก็จะทำให้เกิดมีวงแหวน ของกลุ่มก๊าซแยก ตัวออกไปจากศุนย์กลางของกลุ่มก๊าซเดิม และเมื่อเกิดการหดตัวอีกก็จะมีวงแหวนของกลุ่มก๊าซเพิ่มขึ้น ขึ้นต่อไปเรื่อยๆ วงแหวนที่แยกตัวไปจากศูนย์กลางของวงแหวนแต่ละวงจะมีความกว้างไม่เท่ากัน ตรงบริเวณ ที่มีความ หนาแน่นมากที่สุดของวง จะคอยดึงวัตถุทั้งหมดในวงแหวน มารวมกันแล้วกลั่นตัว เป็นดาวเคราะห์ ดวงจันทร์ของดาว ดาวเคราะห์จะเกิดขึ้นจากการหดตัวของดาวเคราะห์
               สำหรับดาวหาง และสะเก็ดดาวนั้น เกิดขึ้นจากเศษหลงเหลือระหว่าง การเกิดของดาวเคราะห์ดวงต่างๆ ดังนั้น ดวงอาทิตย์ในปัจจุบันก็คือ มวลก๊าซ ดั้งเดิมที่ทำให้เกิดระบบสุริยะขึ้นมานั่นเอง นอกจากนี้ยังมีอีกหลายทฤษฎีที่มีความเชื่อในการเกิดระบบสุริยะ แต่ในที่สุดก็มีความเห็นคล้ายๆ กับแนวทฤษฎีของ Laplace ตัวอย่างเช่น ทฤษฎีของ Coral Von Weizsacker นักดาราศาสตร์ฟิสิกส์ชาวเยอรมัน ซึ่งกล่าวว่า มีวง กลมของกลุ่มก๊าซและฝุ่นละอองหรือเนบิวลา ต้นกำเนิดดวงอาทิตย์ (Solar Nebular) ห้อมล้อมอยู่รอบดวงอาทิตย์ ขณะที่ดวงอาทิตย์เกิดใหม่ๆ และ ละอองสสารในกลุ่มก๊าซ เกิดการกระแทกซึ่งกันและกัน แล้วกลายเป็นกลุ่มก้อนสสาร ขนาดใหญ่ จนกลายเป็น เทหวัตถุแข็ง เกิดขั้นในวงโคจรของดวงอาทิตย์ ซึ่งเราเรียกว่า ดาวเคราะห์ และดวงจันทร์ของ ดาวเคราะห์นั่นเอง






เขตของบริวารดวงอาทิตย์


               ดาวเคราะห์ชั้นใน (Inner Planets) เป็นดาวเคราะห์ขนาดเล็ก มีความหนาแน่นสูงและพื้นผิวเป็น
ของแข็ง ซึ่งส่วนใหญ่เป็นธาตุหนัก มีบรรยากาศอยู่เบาบาง ทั้งนี้เนื่องจากอิทธิพลจากความร้อนของ
ดวงอาทิตย์และลมสุริยะ ทำให้ธาตุเบาเสียประจุ ไม่สามารถดำรงสถานะอยู่ได้ ดาวเคราะห์ชั้นใน
บางครั้งเรียกว่า ดาวเคราะห์พื้นแข็ง “Terrestrial Planets"เนื่องจากมีพื้นผิวเป็นของแข็งคล้ายคลึง
กับโลก ดาวเคราะห์ชั้นในมี 4 ดวง คือ ดาวพุธ ดาวศุกร์ โลก
และดาวอังคาร

               ดาวเคราะห์ชั้นนอก (Outer Planets) เป็นดาวเคราะห์ขนาดใหญ่ แต่มีความหนาแน่นต่ำ เกิดจาก
การสะสมตัวของธาตุเบาอย่างช้าๆ ทำนองเดียวกับการก่อตัวของก้อนหิมะ เนื่องจากได้รับอิทธิพลของ
ความร้อนและลมสุริยะจากดวงอาทิตย์เพียงเล็กน้อย ดาวเคราะห์พวกนี้จึงมีแก่นขนาดเล็กห่อหุ้มด้วย
ก๊าซจำนวนมหาสาร บางครั้งเราเรียกดาวเคราะห์ประเภทนี้ว่า ดาวเคราะห์ก๊าซยักษ์ (Gas Giants) หรือ Jovian Planets ซึ่งหมายถึงดาวเคราะห์ที่มีคุณสมบัติคล้ายดาวพฤหัสบดี ดาวเคราะห์ชั้นนอกมี 4 ดวง
คือ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน 

               ดวงจันทร์บริวาร (Satellites) โลกมิใช่ดาวเคราะห์เพียงดวงเดียวที่มีดวงจันทร์บริวาร โลกมีบริวารชื่อว่า “ดวงจันทร์” (The Moon) ขณะที่ดาวเคราะห์ดวงอื่นก็มีบริวารเช่นกัน เช่น ดาวพฤหัสบดีมี
ดวงจันทร์ขนาดใหญ่ 4 ดวงชื่อ ไอโอ (Io), ยูโรปา (Europa), กันนีมีด (ganymede) และคัลลิสโต (Callisto) ดาวเคราะห์และดวงจันทร์ถือกำเนิดขึ้นพร้อมๆ กัน เพียงแต่ดวงจันทร์มิได้รวมตัวกับ
ดาวเคราะห์โดยตรง แต่ก่อตัวขึ้นภายในวงโคจรของดาวเคราะห์ เราจะสังเกตได้ว่า หากมองจากด้านบน
ของระบบสุริยะ จะเห็นได้ว่า ทั้งดวงอาทิตย์ ดาวเคราะห์และดวงจันทร์ส่วนใหญ่ จะหมุนรอบตัวเองในทิศทวนเข็มนาฬิกา และโคจรรอบดวงทิตย์ในทิศทวนเข็มนาฬิกาเช่นกันหากมองจากด้านข้างของ
ระบบสุริยะก็จะพบว่า ทั้งดวงอาทิตย์ ดาวเคราะห์ และดวงจันทร์บริวาร จะอยู่ในระนาบที่ใกล้เคียงกับ
สุริยะวิถีมาก ทั้งนี้ก็เนื่องมาจากระบบสุริยะทั้งระบบ ก็กำเนิดขึ้นพร้อมๆ กัน โดยการยุบและหมุนตัว
ของจานฝุ่น

               ดาวเคราะห์แคระ (Dwarf Planets) เป็นนิยามใหม่ของสมาพันธ์ดาราศาสตร์สากล (International Astronomical Union) ที่กล่าวถึง วัตถุขนาดเล็กที่มีรูปร่างคล้ายทรงกลม แต่มีวงโคจรเป็นรูปรี ซ้อนทับกับดาวเคราะห์ดวงอื่น และไม่อยู่ในระนาบของสุริยะวิถี ซึ่งได้แก่ ซีรีส พัลลาส พลูโต และดาวที่เพิ่งค้นพบใหม่ เช่น อีริส เซ็ดนา วารูนา เป็นต้น






               ดาวเคราะห์น้อย (Asteroids) เกิดจากวัสดุที่ไม่สามารถรวมตัวกันเป็นดาวเคราะห์ได้ เนื่องจากแรงรบกวนจากดาวเคราะห์ขนาดใหญ่ เช่น ดาวพฤหัสบดี และดาวเสาร์ ดังเราจะพบว่า ประชากรของดาวเคราะห์น้อยส่วนใหญ่อยู่ที่ “แถบดาวเคราะห์น้อย” (Asteroid belt) ซึ่งอยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี ดาวเคราะห์แคระเช่น เซเรส ก็เคยจัดว่าเป็นดาวเคราะห์น้อยที่มีขนาดใหญ่ที่สุด (เส้นผ่านศูนย์กลาง 900 กิโลเมตร) ดาวเคราะห์น้อยส่วนใหญ่จะมีวงโคจรรอบดวงอาทิตย์เป็นรูปรีมาก และไม่อยู่ในระนาบสุริยะวิถี ขณะนี้มีการค้นพบดาวเคราะห์น้อยแล้วประมาณ 3 แสนดวง






               ดาวหาง (Comets) เป็นวัตถุขนาดเล็กเช่นเดียวกับดาวเคราะห์น้อย แต่มีวงโคจรรอบดวงอาทิตย์เป็นวงยาวรีมาก มีองค์ประกอบส่วนใหญ่เป็นก๊าซในสถานะของแข็ง เมื่อดาวหางเคลื่อนที่เข้าหาดวงอาทิตย์ ความร้อนจะให้มวลของมันระเหิดกลายเป็นก๊าซ ลมสุริยะเป่าให้ก๊าซเล่านั้นพุ่งออกไปในทิศทางตรงข้ามกับดวงอาทิตย์ กลายเป็นหาง

               วัตถุในแถบไคเปอร์ (Kuiper Belt Objects) เป็นวัตถุที่หนาวเย็นเช่นเดียวกับดาวหาง แต่มีวงโคจรอยู่ถัดจากดาวเนปจูนออกไป บางครั้งจึงเรียกว่า Trans Neptune Objects ทั้งนี้แถบคุยเปอร์จะอยู่ในระนาบของสุริยะวิถี โดยมีระยะห่างออกไปตั้งแต่ 40 – 500 AU (AU ย่อมาจาก Astronomical Unit หรือ หน่วยดาราศาสตร์ เท่ากับระยะทางระหว่างโลกถึงดวงอาทิตย์ หรือ 150 ล้านกิโลเมตร) ดาวพลูโตเองก็จัดว่าเป็นวัตถุในแถบคุยเปอร์ รวมทั้งดาวเคราะห์แคระซึ่งค้นพบใหม่ เช่น อีริส เซ็ดนา วารูนา เป็นต้น ปัจจุบันมีการค้นพบวัตถุในแถบไคเปอร์แล้วมากกว่า 35,000 ดวง






ดวงอาทิตย์


               ดวงอาทิตย์เป็นดาวฤกษ์ศูนย์กลางของระบบสุริยะ เนื้อสารส่วนใหญ่ของระบบสุริยะอยู่ที่ดวงอาทิตย์ คือ มีมากถึง 99.87% เป็นมวลสารดาวเคราะห์รวมกันอย่างน้อยกว่า 0.13% ดวงอาทิตย์เป็นดาวฤกษ์ขนาดเล็ก เมื่อเทียบกับดาวฤกษ์อื่น ๆ บนฟ้า แต่เป็นดาวฤกษ์ที่อยู่ใกล้โลกที่สุด จึงปรากฏเป็นวงกลมโต บนฟ้าของโลกเพียงดวงเดียว ดาวฤกษ์อื่นปรากฎเป็นจุดสว่าง เพราะอยู่ไกลมาก

                  1.ขนาดเส้นผ่าศูนย์กลาง 1,392,000 กิโลเมตร
                  2.ความหนาแน่นเฉลี่ย 1,408 กิโลกรัม/ลูกบาศก์เมตรหมุนรอบตัวเองที่เส้นศูนย์สูตร 25.04 วัน
                  3.อุณหภูมิพื้นผิวประมาณ 6,000 องศาเซลเซียส
                  4.แรงโน้มถ่วงที่ผิว 27.9 เท่าของโลกการศึกษาสเปกตรัมของแสงอาทิตย์ พบว่า ดวงอาทิตย์มีธาตุต่าง ๆ อยู่มากมาย ธาตุที่มีมาก ที่สุดในดวงอาทิตย์ถึง 3 ใน 4 ส่วน คือ ไฮโดรเจน รองลงมา คือ ฮีเลียมธาตุต่าง ๆ เหล่านี้ อยู่ในสภาวะที่เรียกว่า พลาสมา ( plasma ) คือมีประจุไฟฟ้า เพราะอยู่ภายใต้อุณหภูมิและ ความกดดันสูงมาก ประมาณว่าในใจกลางดวงอาทิตย์คงมีอุณหภูมิสูงถึง 15 ล้านองศาเซลเซียส ซึ่งสูงมากพอที่จะทำให้เกิดปฏิกิริยาเทอร์โมนิวเคลียร์ หลอมไฮโดรเจนให้กลายเป็นฮีเลียม กระบวนการนี้ให้พลังงานแผ่ออกไปในระบบสุริยะปริมาณมหาศาล
                  5.โครงสร้างดวงอาทิตย์ แบ่งเป็น 2 ส่วน คือ ตัวดวงอาทิตย์ และ บรรยากาศของดวงอาทิตย์






ตัวดวงอาทิตย์แบ่งเป็นชั้นสำคัญ 3 ชั้น คือ

                  1. ใจกลางดวง ( Core ) มีขนาดราว 0.25 ของรัศมีดวงอาทิตย์ อุณหภูมิสูงประมาณ 15,000,000 องศาเซลเซียส เป็นแหล่งเกิดปฏิกิริยาเทอร์โมนิวเคลียร์ สร้างพลังงานมหาศาลของดวงอาทิตย์
                  2.ชั้นแผ่รังสี (Radiation Zone) ขนาดราว 0.86 ของรัศมีดวงอาทิตย์ เป็นบริเวณที่พลังงานจากใจกลางดวงแผ่รังสีออกสู่ชั้นนอกของดวงอาทิตย์
                  3.ชั้นพาพลังงาน (Convection Zone) เป็นชั้นที่นำพลังงานจากชั้นแผ่รังสีออกสู่ผิวดวงอาทิตย์ ปรากฏสว่างจ้าในบรรยากาศชั้นผิวหน้าดวงอาทิตย์ ที่เรียก ชั้นโฟโตสเฟียร์


บรรยากาศของดวงอาทิตย์ มี 3 ชั้น

                  1.โฟโตสเฟียร์ (Photosphere ) เป็นชั้นของแสงสว่างของดวงอาทิตย์ที่เรามองเห็นเป็นดวงจ้า มีอุณหภูมิประมาณ 4,000 – 6,000 องศาเซลเซียส เป็นชั้นบาง ๆ แต่สว่างจ้ามากจนเราไม่สามารถมองผ่านลึกลงไปถึงตัวดวงอาทิตย์ได้
                  2. โครโมสเฟียร์ (Chromosphere ) เป็นบรรยากาศบาง ๆ สูงขึ้นจากชั้นโฟโตสเฟียร์ มีอุณหภูมิอยู่ในช่วง 6,000 – 20,000 องศาเซลเซียส เป็นชั้นที่เกิดปรากฏการณ์รุนแรงบนดวงอาทิตย์ เช่น พวยก๊าซ เส้นสายยาวของลำก๊าซ หรือ การระเบิดลุกจ้าบนดวงอาทิตย์
                  3. โคโรนา (Corona ) เป็นบรรยากาศชั้นนอกสุดของดวงอาทิตย์ มีอุณหภูมิสูง 1- 2 ล้านองศาเซลเซียส แผ่อาณาเขตกว้างไกลออกไปมากกว่า 5 เท่าของตัวดวงอาทิตย์ มีรูปร่างเปลี่ยนแปลง ไปตามปรากฏการณ์ที่เกิดขึ้นภายในตัวดวงอาทิตย์ มองเห็นได้เฉพาะขณะเกิดสุริยุปราคาเต็มดวง เมื่อดวงจันทร์เคลื่อนไปบังโฟโตสเฟียร์เท่านั้น เป็นแสงสว่างเรือง สีขาวนวล แผ่ออกโดยรอบ


พลังงานจากดวงอาทิตย์

               ดวงอาทิตย์ปล่อยพลังงานมหาศาลออกมาหลายรูปแบบ คือ อนุภาคพลังงานสูง และ คลื่นแม่เหล็กไฟฟ้า ซึ่งประกอบด้วยคลื่นต่าง ๆ ที่มีความยาวคลื่นหลายช่วง บางช่วงคลื่น มนุษย์ไม่สามารถมองเห็นได้ ได้แก่ คลื่นวิทยุ รังสีอินฟราเรด รังสีอัลตราไวโอเลทรังสีเอกซ์ รังสีแกมมา รังสีคอสมิก เป็นต้น และบางช่วงคลื่นที่เรามองเห็นได้คือในคลื่นแสงธรรมดา
               พลังงานของดวงอาทิตย์ผลิตโดยปฏิกริยา นิวเคลียร์ฟิวชั่น ทุก ๆ หนึ่งวินาที ดวงอาทิตย์จะเปลี่ยนไฮโดรเจน 700,000,000 ตัน ให้กลายเป็นฮีเลียม 695,000,000 ตัน และพลังงานในรูปของรังสีแกมม่าอีกจำนวน 5,000,000 ตัน ซึ่งสามารถผลิตได้ 3.86e33 เอิร์ก/วินาที หรือ 386 พันล้าน พันล้าน เมกกะวัตต์
               ปฏิกิริยาฟิวชั่น (Fusion) เป็นปฏิกิริยาหลอมตัวของนิวเคลียสและมีพลังงานคายออกมาด้วย นิวเคลียสที่ใช้หลอมจะต้องเป็นนิวเคลียสเล็กๆ (A<20) หลอมรวมกลายเป็นนิวเคลียสเบาที่ใหญ่กว่าเดิม ในปัจจุบันเชื่อกันว่าบนดาวฤกษ์ต่างๆ พลังงานมหาศาลที่ปล่อยออกมาเกิดจากปฏิกิริยาฟิวชั่นทั้งสิ้น


ลักษณะทางกายภาพของดวงอาทิตย์

               Sunspots(จุดสุริยะ)   เป็นบริเวณที่ปรากฎให้เห็นมืด ในบรรยากาศชั้นโฟโตสเฟียร์ของดวงอาทิตย์ อาณาบริเวณดังกล่าวจะมีสนามแม่เหล็กสูง จึงขัดขวางพลังงานที่ถูกส่งออกสู่ภายนอกบริเวณนั้น, จุดสุริยะจะมีอุณหภูมิประมาณ 4,700 เคลวิน ขณะที่รอบๆมีอุณหภูมิประมาณ 5,770 เคลวิน,จุดสุริยะจะประกอบด้วยส่วนมืดตรงกลางเรียก Umbra(อัมบรา)และส่วนมัวที่ล้อมรอบเรียก Penumbra(พีนัมบรา)






พวยก๊าซ และการประทุจ้า

               ก๊าซร้อนบนดวงอาทิตย์พุ่งตัวสูงเหนือชั้นโฟโตสเฟียร์ขึ้นมาหลายหมื่นกิโลเมตร เรียกว่า “พวยก๊าซ” (Prominences) มันเคลื่อนที่เข้าสู่อวกาศด้วยความเร็ว 1,000 กิโลเมตร/วินาที หรือ 3.6 ล้านกิโลเมตรต่อชั่วโมง ในบางครั้งมีการระเบิดใหญ่กว่าเรียกว่า “การประทุจ้า” (Solar flare) ทำให้เกิดประจุอนุภาค (ion) พลังงานสูง แผ่รังสีเอ็กซ์ และอุลตราไวโอเล็ต ซึ่งเรียกว่า “พายุสุริยะ” เข้าสู่บรรยากาศชั้นบนของโลก และทำความเสียหายให้แก่ระบบโทรคมนาคม เช่น การสื่อสารผ่านดาวเทียม


ลมสุริยะ

               ปรากฏการณ์ลมสุริยะ แท้จริงเป็นพฤติกรรมทั่วไปของดวงอาทิตย์ และมีผลต่อโลกอยู่บ้าง เช่น ทำให้เกิดปรากฏการณ์แสงเหนือแสงใต้ที่ขั้วโลก หรือรบกวนการทำงานของดาวเทียม
               ลมสุริยะนั้นพุ่งออกจากดวงอาทิตย์ในทุก ๆ ทิศทาง ด้วยความเร็วเฉลี่ย 400 กิโลเมตรต่อวินาที แหล่งกำเนิดลมสุริยะก็คือบรรยากาศร้อนชั้นโคโรนาของดวงอาทิตย์เอง อุณหภูมิที่นี่จะสูงมากเสียจนแรงดึงดูดของดวงอาทิตย์ไม่สามารถดึงชั้นบรรยากาศ เอาไว้ได้ ถึงแม้เราจะรู้ว่าทำไมจึงมีสิ่งนี้เกิดขึ้น แต่เราก็ไม่เข้าใจในรายละเอียดว่า ก๊าซชั้นโคโรลาถูกเร่งให้มีความเร็วได้อย่างไร และที่จุดไหน องค์ประกอบของลมสุริยะนั้น 95 เปอร์เซ็นต์เป็นโปรตอน (ไฮโดรเจน) 4 เปอร์เซ็นต์เป็นอนุภาคอัลฟ่า (ฮีเลียม) และอีก 1 เปอร์เซ็นต์เป็นประจุย่อย ๆ ของ คาร์บอน ไนโตรเจน ออกซิเจน นีออน แมกนีเซียม ซิลิคอน และเหล็ก ความเร็วของลมสุริยะที่วัดในระนาบโคจร มีค่าอยู่ระหว่าง 300 ถึง 600 กิโลเมตรต่อวินาที แต่ในบางโอกาสก็มีความเร็วมากกว่า 1,000 กิโลเมตรต่อวินาที ความหนาแน่นของลมสุริยะมีค่าประมาณ 1-10 อนุภาคต่อเซนติเมตร ลมสุริยะนั้นพุ่งออกจากดวงอาทิตย์ในทุกทิศทาง แต่ก็ไม่สม่ำเสมอนัก ลมสุริยะมีความผันแปรในเรื่องความเร็ว และเมฆแม่เหล็กที่มันพัดเอาออกมาด้วย ลมสุริยะที่มีความเร็วสูงอาจจะปะทะกับลมสุริยะที่มีความเร็วต่ำ ซึ่งจะเกิดเป็นพื้นที่อันมีปฏิกิริยาต่อกัน (interaction region) และจะพัดออกมา พัดผ่านโลกไป ซึ่งก็ขึ้นอยู่กับการหมุนของดวงอาทิตย์เอง ลมสุริยะที่ความเร็วแปรปรวนนี้อาจจะปะทะเข้ากับบรรยากาศชั้นแม่เหล็กของโลก และทำให้เกิดพายุขึ้นในบรรยากาศชั้นแมกนีโทสเฟียร์


ปรากฏการณ์ออรอรา (Aurora)

               เมื่อลมสุริยะผ่านเข้ามาทำปฏิกิริยากับบรรยากาศชั้นบนของโลกในระดับไอโอโนส เฟียร์ ซึ่งสูงราว 120 กิโลเมตรขึ้นไป อะตอมของก๊าซออกซิเจนและไนโตรเจนถูกกระตุ้นเรืองแสงสว่างสวยงาม คล้ายม่านของแสงพลิ้วไปในท้องฟ้ากลางคืน เรียกปรากฏการณ์นี้ว่า ออรอรา หรือ แสงเหนือ เมื่อเกิดในท้องฟ้าใกล้ขั้วเหนือ และ แสงใต้ เมื่อเกิดในท้องฟ้าใกล้ขั้วใต้







ไม่มีความคิดเห็น:

แสดงความคิดเห็น