กล้องโทรทรรศน์
เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการหักเหของแสง ผ่านเลนส์วัตถุ (Objective Lens) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ ค้นพบก่อนที่กาลิเลโอจะนำมาพัฒนา และนิยมใช้จนแพร่หลาย ในสมัยของกาลิเลโอ ซึ่งเหมาะสำหรับ สำรวจพื้นผิวของดวงจันทร์, ดาวเคราะห์, วงแหวนและดาวบริวารของดาวเคราะห์ เป็นต้น

ข้อดี ของกล้องโทรทรรศน์แบบหักเหแสงนี้ เหมาะสำหรับมือใหม่ เนื่องจาก ราคาถูก (เมื่อเทียบกับแบบอื่น), เคลื่อนย้าย, ประกอบใช้งานง่าย, และเนื่องจากไม่ต้องตั้งอะไรมากนัก ทำให้บำรุงรักษาง่าย นอกจากนี้ โครงสร้างของกล้อง ก็ป้องกันฝุ่นในตัวอยู่แล้ว
ข้อเสีย คือขนาดสูงสุดของเลนส์วัตถุไม่มากนัก ซึ่งทั่วไปจะมีขนาดประมาณ 3-5 นิ้ว ดังนั้น จึงไม่สามารถสังเกตวัตถุที่จางมากๆ นอกจากนี้ ขนาดของเลนส์วัตถุที่ใใหญ่มาก จะทำให้ภาพที่ได้มีสีเพี้ยน เนื่องจากการหักเหของแต่ละสี ในสเปคตรัมของแสงไม่เท่ากัน ทำให้ต้องมีการเคลือบเลนส์ (Coating) เพื่อแก้ไข ทำให้ราคาสูงขึ้นอีก และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา ทำให้มือใหม่ ยากต่อการเปรียบเทียบกับแผนที่ฟ้าได้

2. กล้องโทรทรรศน์ แบบสะท้อนแสง (Refrector Telescope)
เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการสะท้อนของแสง ผ่านกระจกโค้ง (Concave Objective Mirror) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ พัฒนาโดยไอแซ็ค นิวตัน จึงมีอีกชื่อหนึ่ง คือ กล้องโทรทรรศน์แบบนิวตัน (Newtonian Telescope) ซึ่งเหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น

ข้อดี ของกล้องโทรทรรศน์แบบสะท้อนแสงนี้ เหมาะสำหรับทั่วไป เนื่องจาก ภาพที่ได้มีคุณภาพดี, ราคาไม่สูงมาก นอกจากนี้ ภาพที่ได้ก็เหมือนจริง (ไม่กลับข้าง) นอกจากนี้ ขนาดของหน้ากล้อง ซึ่งมีความสำคัญต่อการรับแสง กล้องชนิดนี้ ก็มีขนาดให้เลือกมากกว่า
ข้อเสีย คือกระจกสะท้อนที่สอง (Secondary Mirror or Reflecting Mirror) ที่อยู่ภายในกล้อง ที่ทำหน้าที่สะท้อนภาพมายังเลนส์ตานั้น จะลดพื้นที่รับแสงของกล้องแบบนี้ ทำให้เมื่อขนาดของหน้ากล้องเท่ากัน กล้องแบบหักเหแสงจะรับแสงได้มากกว่า ทำให้เห็นภาพวัตถุที่จางกว่าได้ (แต่กล้องโทรทรรศน์แบบสะท้อนแสง มีขนาดของหน้ากล้องที่ใหญ่กว่าให้เลือกแทน) และกล้องแบบนี้ ก็ต้องการการดูแลรักษา โดยเฉพาะการป้องกันฝุ่น หรือน้ำค้าง เนื่องจากด้านหน้าของกล้อง เปิดออกรับแสงโดยตรง โดยไม่มีอะไรมาปิดไว้

3. กล้องโทรทรรศน์ แบบ Catadioptric (Catadioptric Telescope)
เป็นกล้องโทรทรรศน์ ที่อาศัยทั้งหลักการสะท้อนและการหักเหของแสง เข้าไว้ด้วยกัน ซึ่งกล้องชนิดนี้ ใช้ทั้งกระจกโค้งสะท้อน และเลนส์ในการหักหของแสง และเรียกกล้องชนิดนี้ว่า "Catadioptric" หมายถึง กระจก-เลนส์ (mirror-lens) ตัวอย่างเช่น กล้องแบบ Schmidt-Cassegrain, Maksutov-Cassegrain เป็นต้น กล้องชนิดนี้ จำหน่ายครั้งแรกในยุค ค.ศ. 1970s (ประมาณ 20-30 ปีที่ผ่านมาเท่านั้น) กล้องชนิดนี้ เหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น

ข้อดี ของกล้องโทรทรรศน์แบบนี้ ทำให้มีขนาดเล็ก (ขณะที่หน้ากล้องใหญ่ขึ้น) ทำให้เคลื่อนย้ายสะดวก, ขนาดที่ของกล้องสั้น ทำให้ติดตั้งมอเตอร์ติดตามดาวได้ง่าย เนื่องจากน้ำหนักสมดุลกว่า และติดตั้งอุปกรณ์ประกอบได้ง่าย เช่น กล้อง CCD สำหรับถ่ายภาพ เป็นต้น
ข้อเสีย คือราคาที่สูงกว่ากล้องแบบอื่นๆ (ในขนาดที่เท่ากัน) และภาพที่ได้ มีความคมสู้แบบสะท้อนแสงไม่ได้ (ในขนาดที่เท่ากัน) เนื่องจาก เลนส์ตาที่ทำหน้าที่หักเหแสง และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา เช่นเดียวกับกล้องโทรทรรศน์แบบหักเหแสง ทำให้ยากต่อการเปรียบเทียบ กับแผนที่ฟ้าได้
ฐานตั้งกล้อง
ฐานตั้งกล้องพอจะแบ่งได้เป็น 2 ชนิดใหญ่ ๆ ตามลักษณะของแกนหมุนคือ
แบบอัลตาซิมุท
ฐานตั้งกล้องระบบนี้เป็นระบบที่เรียบง่ายที่สุด มีแกนหมุนสองแนวคือแนวราบ (azimuth) และแนวตั้ง (altitude) ฐานตั้งกล้องถ่ายรูปทั่ว ๆ ไปก็เป็นฐานตั้งกล้องแบบอัลตาซิมุทนี้นั่นเอง ฐานตั้งกล้องแบบนี้มีราคาถูก สร้างง่าย แต่ไม่เหมาะกับงานทางดาราศาสตร์นัก เนื่องจากทิศทางการหมุนของแกนนั้นไม่สอดคล้องกับทิศทางการเคลื่อนที่ของดวงดาว แต่จะเหมาะการถ่ายภาพดาราศาสตร์บางอย่าง โดยเฉพาะภาพที่อิงขอบฟ้าโลก เช่นภาพปรากฏการณ์คอนจังก์ชันที่ขอบฟ้า ภาพดาวเคลื่อนที่เป็นเส้นยาว หรือภาพซึ่งใช้เวลาการเปิดหน้ากล้องค่อนข้างสั้น เช่น ภาพดวงอาทิตย์ ภาพดวงจันทร์ ภาพสุริยุปราคา หรือภาพจันทรุปราคา เป็นต้น
แบบอิเควตอเรียล
ฐานตั้งกล้องแบบอิเควตอเรียลจะมีแกนหมุนสองแกน แกนหนึ่งชี้ไปที่ขั้วท้องฟ้า (บริเวณใกล้ดาวเหนือ) เรียกว่าแกนขั้วฟ้า (Polar axis) แกนนี้จึงหมุนตามการเคลื่อนที่ของดวงดาว อีกแกนหนึ่งซึ่งตั้งฉากกับแกนขั้วฟ้า คือ แกนเดคลิเนชัน (Declination axis) แกนนี้จะหันกล้องไปในทางเดคลิเนชันหรือตามแนวขั้วฟ้าเหนือ-ใต้นั่นเอง ในขณะที่ตั้งกล้องสังเกตวัตถุท้องฟ้านั้น วัตถุจะเคลื่อนที่ตามแนวเดคลิเนชันไปทางตะวันตกช้า ๆ ผู้สังเกตการณ์จึงต้องปรับที่แกนเดคลิเนชันตามตลอดเวลาเพื่อไม่ให้วัตถุตกขอบจอภาพไป ถ้าเป็นฐานตั้งกล้องที่มีราคาจะมีมอเตอร์ไฟฟ้าหมุนแกนเดคลิเนชันด้วยความเร็ว 1 รอบต่อ 1 วันตามความเร็วในการหมุนรอบตัวเองของโลก ทำให้ผู้สังเกตการณ์สามารถสังเกตการณ์ได้นานต่อเนื่องกันโดยไม่ต้องคอยปรับตำแหน่งกล้องเรื่อย ๆ ฐานตั้งกล้องคุณภาพสูงมักเป็นแบบอีเควตอเรียลทั้งสิ้น
ฐานตั้งกล้องแบบอิเควตอเรียลจะมีแกนหมุนสองแกน แกนหนึ่งชี้ไปที่ขั้วท้องฟ้า (บริเวณใกล้ดาวเหนือ) เรียกว่าแกนขั้วฟ้า (Polar axis) แกนนี้จึงหมุนตามการเคลื่อนที่ของดวงดาว อีกแกนหนึ่งซึ่งตั้งฉากกับแกนขั้วฟ้า คือ แกนเดคลิเนชัน (Declination axis) แกนนี้จะหันกล้องไปในทางเดคลิเนชันหรือตามแนวขั้วฟ้าเหนือ-ใต้นั่นเอง ในขณะที่ตั้งกล้องสังเกตวัตถุท้องฟ้านั้น วัตถุจะเคลื่อนที่ตามแนวเดคลิเนชันไปทางตะวันตกช้า ๆ ผู้สังเกตการณ์จึงต้องปรับที่แกนเดคลิเนชันตามตลอดเวลาเพื่อไม่ให้วัตถุตกขอบจอภาพไป ถ้าเป็นฐานตั้งกล้องที่มีราคาจะมีมอเตอร์ไฟฟ้าหมุนแกนเดคลิเนชันด้วยความเร็ว 1 รอบต่อ 1 วันตามความเร็วในการหมุนรอบตัวเองของโลก ทำให้ผู้สังเกตการณ์สามารถสังเกตการณ์ได้นานต่อเนื่องกันโดยไม่ต้องคอยปรับตำแหน่งกล้องเรื่อย ๆ ฐานตั้งกล้องคุณภาพสูงมักเป็นแบบอีเควตอเรียลทั้งสิ้น
การขนส่งและการโคจรของดาวเทียม
บันทึกของชาวจีนที่ต่อสู้กับชาวมองโกลในปีพ.ศ.1775กล่าวถึงการใช้ประโยชน์จากจรวดไว้ว่า “ใช้จรวดขับดันลูกธนูพุ่งเข้าหาฝ่ายตรงข้าม” บั้งไฟของไทยก็มีหลักการเดียวกับจรวดคือแรงกิริยาจากไอเสียกระทำต่อบั้งไฟให้พุ่งออกไปข้างหน้าเท่ากับแรงปฏิกิริยาจากบั้งไฟกระทำต่อไอเสียให้พุ่งออกไปข้างหลังดังภาพ7.3แต่ความเร็วยังไม่สูงพอที่จะเคลื่อนที่ออกจากโลกได้ ในปี พ.ศ. 2446ไชออลคอฟสกี (Tsiolkovski) ชาวรัสเซียค้นคว้าเกี่ยวกับเชื้อเพลิงสำหับใช้ในเครื่องยนต์จรวด เสนอว่าการใช้เชื้อเพลิงแข็งจะไม่มีแรงขับดันสูงพอที่จะนำยานอวกาศออกจากพื้นโลกขึ้นสู่อวกาศได้ ควรใช้เชื้อเพลิงเหลว ซึ่งแยกเชื้อเพลิงและสารที่ช่วยในการเผาไหม้แยกออกจากกัน การนำจรวดมาต่อกันเป็นชั้นๆ จะช่วยลดมวลของจรวดลง เพราะเมื่อจรวดชั้นแรกใช้เชื้อเพลิงหมดก็ปล่อยทิ้งไป และให้จรวดชั้นต่อไปทำหน้าที่ต่อ จนถึงจรวดชั้นสุดท้ายที่ติดกับดาวเทียมหรือยานอวกาศ จะมีความเร็วสูงพอที่จะเอาชนะแรงดึงดูดของโลกขึ้นสู่อวกาศได้
หลักการส่งยานอวกาศของไชออลคอฟสกีถือเป็นหลักการสำคัญในการเดินทางสู่อวกาศ
ในปี พ.ศ. 2469 โรเบิร์ต กอดดาร์ด (Robert Goddard) ชาวอเมริกันประสบความสำเร็จในการสร้างจรวดเชื้อเพลองเหลว โดยใช้ออกซิเจนเหลวเป็นสารที่ช่วยในการเผาไหม้อยู่ในถังหนึ่ง และไฮโดรเจนเหลวเป็นเชื้อเพลิงอยู่ในอีกถังหนึ่ง
ได้มีการพัฒนาจรวดเชื้อเพลิงเหลวมาเป็นลำดับ กระทั่งสหภาพโซเวียตประสบความสำเร็จในการใช้จรวดสามท่อนสำหรับส่งยานอวกาศหรือดาวเทียมที่มีน้ำหนักมากขึ้นสู่อวกาศจากนั้นการศึกษาค้นคว้าด้านอวกาศก็มีการพัฒนาอย่างรวดเร็วเนื่องจากมีการแข่งขันกันระหว่างประเทศมหาอำนาจ
ระบบขนส่งอวกาศ
จรวดเป็นอุปกรณ์ราคาแพง เมื่อถูกส่งขึ้นสู่อวกาศแล้วไม่สามารถนำมาใช้ใหม่ได้ การส่งจรวดแต่ละครั้งจึงสิ้นเปลืองมาก นักวิทยาศาสตร์จึงพัฒนาแนวคิดในการสร้างยานขนส่งขนาดใหญ่ที่สามารถเดินทางขึ้นสู่อวกาศแล้วเดินทางกลับสู่โลกให้นำมาใช้ใหม่ได้หลายครั้ง เรียกว่า "กระสวยอวกาศ" (Space Shuttle) มีองค์ประกอบประกอบ 3 ส่วนตามภาพที่ 1 ดังนี้
1.จรวดเชิ้อเพลิงแข็ง (Solid Rocket Booster)จำนวน 2 ชุด ติดตัั้งขนาบกับถังเชื้อเพลิงภายนอกทั้งสองข้าง มีหน้าที่ขับดันให้ยานขนส่งอวกาศทั้งระบบทะยานขึ้นสู่อวกาศ
2.ถังเชื้อเพลิงภายนอก (External Tank) จำนวน 1 ถัง ติดตั้งอยู่ตรงกลางระหว่างจรวดเชื้อเพลิงแข็งทั้งสองด้าน มีหน้าที่บรรทุกเชื้อเพลิงเหลว ซึ่งมีท่อลำเลียงเชื้อเพลิงไปทำการสันดาปในเครื่องยนต์ซึ่งติดตั้งอยู่ทางด้านท้ายของกระสวยอวกาศ
3.ยานขนส่งอวกาศ (Orbiter) ทำหน้าที่เป็นยานอวกาศ ห้องทำงานของนักบิน ห้องปฏิบัติการของนักวิทยาศาสตร์ และบรรทุกสัมภาระที่จะไปปล่อยในวงโคจรในอวกาศ เช่น ดาวเทียม หรือชิ้นส่วนของสถานีอวกาศ เป็นต้น เมื่อปฏิบัติภารกิจสำเร็จแล้ว ยานขนส่งอวกาศจะทำหน้าที่เป็นเครื่องร่อน นำนักบินอวกาศและนักวิทยาศาสตร์กลับสู่โลกโดยร่อนลงสนามบิน ด้วยเหตุนี้ยานขนส่งอวกาศจึงต้องมีปีกไว้สำหรับสร้างแรงยก แรงต้านทาน และควบคุมท่าทางการบินขณะที่กลับสู่ชั้นบรรยากาศของโลก ยานขนส่งอวกาศสามารถนำมาใช้ใหม่ได้หลายครั้ง
ขั้นตอนการทำงานของกระสวยอวกาศ
กระสวยอวกาศยกตัวขึ้นจากพื้นโลก โดยใช้กำลังขับดันหลักจากจรวดเชื้อเพลิงแข็ง 2 ชุด และใช้แรงดันจากเครื่องยนต์เชื้อเพลิงเหลวซี่งติดตั้งอยู่ทางด้านท้ายของยานขนส่งอวกาศเป็นตัวควบคุมวิถีของกระสวยอวกาศ
หลังจากทะยานขึ้นสู่ท้องฟ้าได้ 2 นาที ได้ระยะสูงประมาณ 46 กิโลเมตร เชื้อเพลิงแข็งถูกสันดาปหมด จรวดเชื้อเพลิงแข็งถูกปลดออกให้ตกลงสู่พื้นผิวมหาสมุทร โดยกางร่มชูชีพเพื่อชะลออัตราการร่วงหล่น และมีเรือมารอลากกลับ เพื่อนำมาทำความสะอาดและบรรจุเชื้อเพลิงเพื่อใช้ในภารกิจครั้งต่อไป
กระสวยอวกาศยังคงทะยานขึ้นสู่อวกาศต่อไปยังระดับความสูงของวงโคจรที่ต้องการ โดยเครื่องยนต์หลักที่อยู่ด้านท้ายของยานขนส่งอวกาศจะดูดเชื้อเพลิงเหลวจากถังเชื้อเพลิงภายนอก มาสันดาปจนหมดภายในเวลา 5 นาที แล้วสลัดถังเชื้อเพลิงภายนอกทิ้งให้เสียดสีกับชั้นบรรยากาศจนลุกไหม้หมดก่อนตกถึงพื้นโลก ณ เวลานั้นยานขนส่งอวกาศจะอยู่ในระดับความสูงของวงโคจรที่ต้องการเป็นที่เรียบร้อยแล้ว

ยานขนส่งอวกาศเข้าสู่วงโคจรอบโลกด้วยแรงเฉื่อย โดยมีเชื้อเพลิงสำรองภายในยานเพียงเล็กน้อยเพื่อใช้ในการปรับทิศทาง เมื่อถึงตำแหน่ง ความเร็ว และทิศทางที่ต้องการ จากนั้นนำดาวเทียมที่เก็บไว้ในห้องเก็บสัมภาระออกมาปล่อยเข้าสู่วงโคจร ซึ่งจะเคลื่อนที่โดยอาศัยแรงเฉื่อยจากยานขนส่งอวกาศนั่นเอง แสดงให้เห็นยานขนส่งอวกาศกำลังใช้แขนกลยกกล้องโทรทรรศน์อวกาศฮับเบิลออกจากห้องเก็บสินค้าที่อยู่ด้านบน เพื่อส่งเข้าสู่อวงโคจรรอบโลก
จากนั้นยานขนส่งอวกาศจะเคลื่อนที่จากออกมา โดยยานขนส่งอวกาศสามารถปรับท่าทางการบินโดยใช้เครื่องยนต์จรวดเชื้อเพลิงเหลวขนาดเล็ก ซึ่งเรียกว่า "ทรัสเตอร์" (Thrusters) หลายชุดซึ่งติดตั้งอยู่รอบยาน ยกตัวอย่างเช่น หากต้องการให้ยานก้มหัวลง ก็จะจุดทรัสเตอร์หัวยานด้านบนและทรัสเตอร์ท้ายยานด้านล่างพร้อมๆ กัน เมื่อได้ทิศทางที่ต้องการก็จะจุดทรัสเตอร์ในทิศตรงการข้ามเพื่อหยุดการเคลื่อนไหว หากต้องการหันยานไปทางขวามือ ก็จุดทรัสเตอร์หัวยานด้านซ้ายและทรัสเตอร์ท้ายยานด้านขวาพร้อมๆ กัน เมื่อได้ทิศทางที่ต้องการจุดทรัสเตอร์ในทิศตรงการข้ามเพื่อหยุดการเคลื่อนไหว
เมื่อเสร็จสิ้นภารกิจในวงโคจร ยานขนส่งอวกาศจะใช้ปีกในการต้านทานอากาศเพื่อชะลอความเร็ว และสร้างแรงยกเพื่อร่อนลงสู่สนามบินในลักษณะคล้ายเครื่องร่อนซึ่งไม่มีแรงขับเคลื่อนใดๆ นอกจากแรงโน้มถ่วงของโลกที่กระทำต่อตัวยาน ดังนั้นเมื่อตัดสินใจจะทำการลงแล้วต้องลงให้สำเร็จ ยานขนส่งอวกาศจะไม่สามารถเพิ่มระยะสูงได้อีก หลังจากที่ล้อหลักแตะพื้นสนามบินก็จะปล่อยร่มชูชีพเพื่อชะลอความเร็ว เพื่อให้ใช้ระยะทางบนทางวิ่งสั้นลง
การใช้ประโยชน์จากเทคโนโลยีอวกาศ
เป็นดาวเทียมที่มีอุปกรณ์ถ่ายภาพเมฆ และเก็บข้อมูลของบรรยากาศในระดับสูง ช่วยให้ได้ข้อมูลที่สำคัญในการพยากรณ์อากาศได้อย่างถูกต้อง รวดเร็วรวมถึงการเฝ้าสังเกตการก่อตัว การเปลี่ยนแปลง และการเคลื่อนตัวของพายุที่เกิดขึ้นบนโลก ช่วยป้องกันหรือบรรเทาความเสียหายรุนแรงที่เกิดขึ้นได้อย่างมาก ข้อมูลจากดาวเทียมเป็นข้อมูลสำคัญมากในการพยากรณ์อากาศ
(1).jpg)
ดาวเทียมสำรวจทรัพยากรโลก
เป็นดาวเทียมที่มีอุปกรณ์สำรวจแหล่งทรัพยากรณ์ที่สำคัญ นอกจากนี้ยังเฝ้าสังเกตสภาพแวดล้อมที่เกิดบนโลก ช่วยเตือนอุทกภัย และความแห้งแล้งที่เกิดขึ้น การตัดไม้ทำลายป่า การทับถมของตะกอนปากแม่น้ำ รวมไปถึงแหล่งที่มีปลาชุกชุม และอื่นๆ อีกมาก
(1).jpg)
ดาวเทียมสังเกตการณ์ดาราศาสตร์
เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษาวัตถุท้องฟ้า ดาวเทียมสังเกตการณ์ดาราศาสตร์มีทั้งหมดที่โคจรอยู่รอบโลกและประเภทที่โคจรผ่านไปใกล้ดาวเคราะห์ หรือลงสำรวจดาวเคราะห์ ซึ่งเรีกยอีกอย่างว่ายานอวกาศ เช่นยานอวกาศวอยเอเจอร์ที่เดินทางผ่านเฉียดดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูล เป็นต้น
ดาวเทียมสื่อสาร
เป็นดาวเทียมที่มีอุปกรณ์สื่อสารติดตั้งอยู่ เช่น ดาวเทียมอินเทลแซท (ภาพ 7.6 ) ดาวเทียมชุดนี้อยู่ในวงโคจรรอบโลก 3 แห่ง คือเหมือนมหาสมุทรอินเดียเพื่อการติดต่อระหว่างทวีปยุโรปเหนือมหาสมุทรแปซิฟิกเพื่อการติดต่อระหว่างทวีปเอเชียกับทวีปอเมริกา และและเหนือมหาสมุทรแอตแลนติกเพื่อการติดต่อระหว่างทวีปอเมริกากับทวีปยุโรป เมื่อรวมทั้งระบบจึงสามารถติดต่อกันได้ทั่วโลก
.jpg)
ดาวเทียมสื่อสารของไทย (ภาพ 7.7) ชื่อไทยคม สร้างโดยบริษัท ฮิวจ์ แอร์คราฟท์ ประเทศสหรัฐอเมริกา ส่งขึ้นสู่อวกาศโดยบริษัทแอเรียน สเปซ ประเทศฝรั่งเศษ จากฐานส่งที่เมืองคูรู ดินแดนแฟรนช์เกียนา ดาวเทียมไทยคมช่วยการติดต่อสื่อสารได้ทั่วประเทศไทยและประเทศในแถบอินโดจีนไปจนถึงเกาหลีและญี่ปุ่น รวมทั้งชายฝั่งทะเลด้านตะวันออกของจีน เป็นดาวเทียมสื่อสารที่ประเทศไทยให้บริการสื่อสารโทรคมนาคมด้านต่างๆ เช่น การถ่ายทอดโทรทัศน์ วิทยุ โทรศัพท์ การประชุมทางไกล และระบบถ่ายทอดสัญญาณโทรทัศน์สู่เสาอากาศของผู้รับในบ้านได้ โดยตรง
กล้องโทรทรรศน์อวกาศฮับเบิล
กล้องโทรทรรศน์ เป็นอุปกรณ์สำคัญที่ทำให้นักดาราศาสตร์สามารถเฝ้าติดตามสังเกตวัตถุบนท้องฟ้าได้อย่างชัดเจนและต่อเนื่อง มีการพัฒนากล้องโทรทรรศน์ให้มีประสิทธิภาพสูงตามความต้องการที่จะศึกษา ยานขนส่งอวกาศดิสคัฟเวอรีนำกล้องโทรทรรศน์ มูลค่า 1,500 ล้านเหรียญสหรัฐ ขึ้นสู่อวกาศในวันที่ 25 เมษายน พ.ศ. 2533 เพื่อเป็นเกียรติแก่ เอ็ดวิน ฮับเบิล นักดาราศาสตร์ชาวอเมริกา ผู้ศึกษาค้นดว้าเรื่องราวเกี่ยวกับกาแลกซีต่างๆ กล้องโทรทรรศน์กล้องนี้จึงได้ชื่อว่ากล้องโทรทรรศน์อวกาศฮับเบิลหรือเรียกสั้นๆ ว่ากล้องฮับเบิล
(1).jpg)
กล้องฮับเบิลเป็นกล้องโทรทรรศน์ชนิดสะท้อนแสงกระจกเว้ารับแสงมัขนาดเส้นผ่านศูนย์กลาง 2.4 เมตร ตัวกล้องมีความกว้าง 4.3 เมตร ยาว 13.3 เมตร มวลประมาณ 11,360 กิโลกรัม ใช้พลังงานจากแผงเซลล์สุริยะที่ปีก 2 ข้าง กระแสไฟฟ้าที่ผลิตได้จะถูกเก็บไว้ในแบตเตอรี่นิเกิล-ไฮโดรเจนขนาดใหญ่ 6 ตัว เพื่อใช้งานเมื่อกล้องโคจรไปอยู่ในเงาของโลก ขณะไม่ได้รับแสงอาทิตย์ อุปกรณ์สำคัญที่ติดไปกับกล้องคือ ระบบคอมพิวเตอร์ กล้องถ่ายภาพมุมกว้าง เครื่องตรวจรับสเปกตรัม เครื่องปรับทิศทางของกล้อง เป็นต้น โดยอุปกรณ์ทั้งหมดสามารถควบคุมการทำงานได้จากศูนยืควบคุมบนโลก ภาพถ่ายจากกล้องจะได้รับการศึกษาวิเคราะห์โดยสถาบันวิทยาศาสตร์กล้องโทรทรรศน์อวกาศ เพื่อใช้ป็นข้อมูลทางด้านดาราศาสตร์
กล้องบนพื้นโลกส่องสังเกตวัตถุท้องฟ้าได้ไกลราว 2 พันล้านปีแสง แต่กล้องฮับเบิลส่องเห็นไปได้ไกลราว 14,000 ล้านปีแสง ข้อมูลที่ได้จากกล้องฮับเบิลเพียงระยะเวลาสั้นๆ ได้แสดงให้เห็นรายละเอียดต่างๆ ของวัตถุท้องฟ้า ช่วยให้เกิดความเข้าใจถึงส่วนประกอบในระบบสุริยะ การกำเนิดดาวฤกษ์โครงสร้างและการเปลี่ยนแปลงของกาแล็กซีรวมทั้งวิวัฒนาการของเอกภพ ที่นักดาราศาสตร์เฝ้าสังเกตมานานหลายร้อยปีซึ่งไม่เคยเห็นมาก่อน เป็นการมองออกไปในเอกภพอย่างกว้างไกล
ไม่มีความคิดเห็น:
แสดงความคิดเห็น